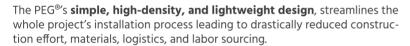
PEG[®] PV Substructure

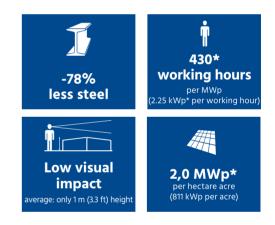
A unique simplified high-density ground mount solution



180+

plants installed worldwide

installed



The racking is low to the ground, about waist height, providing an aerodynamic design suitable for extreme wind hurricanes.

Our PEG® racking decreases material and installation costs as well as the consumption of CO² while providing a robust ground-mount solar solution that brings energy resiliency and scaleability to GW+.

Learn more about, why PEG is the best ground mount solution: https://www.jurchen-technology.com/products/ solar-mounting/peg/peg-design/

Design

- Extremely light substructure, 78% less steel versus a conventional system
- Maximize land energy density with +225% MWh/acre
- Patented, innovative, minimalist, simple design
- Robust & certified for tropical weather, high winds (185+ mph, 298+ kmh) and high snow loads (50+ psf)
- Low visual impact, typically up to 3.3 ft (1 m) high

Procurement

- Significant CAPEX reduction of both supply and delivery
- 2.2 MW of substructure per 40 ft container

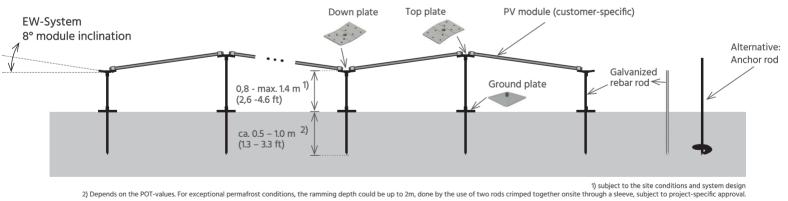
Installation

- Safe installation, working height 3.3 ft (1 m)
- No heavy machines, rods install with e.g. hammer drill
- No DC cable trenching
- No concrete foundations

- Simpler H&S procedures
- Low-skilled labor
- 430 working hours* per MWp with 580 watt modules - applies to PEG EW standard

Operation

Key data


- Optimized energy generation, higher during the morning and afternoon
- Low ecological footprint Carbon footprint is 72 % (61 tons CO2/MWp) less versus a conventional fixed-tilt system.
- Proven design with over 500+ MWp in operation in all continents
- 811 kWp DC per acre (2,0 MWp* DC per hectare)
- Produces ~225% more yield per Hectare (or acre) versus trackers and fixed tilt systems
- Hot-dip galvanised steel offers high resistance to demanding corrosion classes (e.g. also near the sea)

Technical data		
Orientation PV array	Patented 8° East-West, fixed-tilt, aerodynamic	
BOM (Bill of material)	~1.1 rods and ~2.2 clips per module	
Large volume scalability	From 10 kWp to GW+ scale	
Durability	Hot dip galvanized steel rods and plates	3
Wind loads	Designed for 298+ kmh (185+ mph) per ASCE 7-16 Structural Code;	A AND
	compliance TBD by local engineering. Values may vary depending on the countrys structural code.	
Seismic loads	Flexible design allows high tolerances for seismic activity	
Certifications	- PEG specific clamping approval from module manufacturers	
Us UL Std. 2703	- Wind load certificate by German IFI Institute with local wind codes (ASCE).	
Intertek	- The PEG [®] substructure is UL 2703 certified.	
	- PE Stamped Drawings - Design loads according to local building codes: ASCE 7, NBC, Eurocode, AS1170, IS875, and SANS10160, etc.	Installation of
	Values may vary depending on the structural code.	- 7 · · · ·

Requirements		
Land soil condition	Cohesive (e.g. sandy-clay, clayey silt) and non-cohesive soil (e.g. sand or sand-gravel). Rock (e.g. lime stone, basalt), pre drilling required.	
Upper soil layer	Pre drilling needed if hard bedrock or underground infrastructure 1 m below ground (deeper if needed). Rammed depth up to 0.8m (or deeper if needed).	
Site slopes	Up to 10° (17.6%) for sites without snow. 6% slope with snow, subject to site conditions and site specific system design	

* Explanation of key figures on page 1:

MWp/ha:	Referring to the complete DC area, including the gaps between the DC blocks/tables	
kWp/working hour:	Time for complete DC installations including inverter stations	
MWp/container:	Only the substructure	
Machine costs:	All machines required for the DC installation	
Labor costs:	Labor for complete DC installations including inverter stations	
Logistic costs:	Including machinery and labor, to the site and onsite	
All figures assume suitable ground conditions, a min. 5MWp PEG® system with 580W modules and may differ regionally.		

PEG[®] Datasheet US 2024_0320 Pictures: Jurchen Technology GmbH, Meralli Projects PTY Ltd All data may subject to alterations and errors.

Jurchen Technology GmbH Prinz-Ludwig-Str. 5 97264 Helmstadt Germany

info@jurchen-technology.com www.jurchen-technology.com